Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Amrita Saha, ${ }^{\text {a }}$ Ghezai Musie ${ }^{\text {a }}$ and Douglas R. Powell ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Texas at San Antonio, 6900 N Loop 1604 W, San
Antonio, TX 78249-0698, USA, and
${ }^{\text {b }}$ Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA

Correspondence e-mail: gmusie@utsa.edu

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.113$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Sodium tris(acetylacetonato- $\left.\kappa^{2} O, O^{\prime}\right)$ manganese(II)

In the title compound, $\mathrm{Na}\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{3}\right]$, the manganese(II) ions are each coordinated by six O atoms from three different acetylacetonate ligands in a trigonal prismatic geometry. The octahedrally coordinated Na cations are sandwiched between two adjacent $\left[\mathrm{Mn}(\mathrm{acac})_{3}\right]^{-}$units (acac is acetylacetonate). The three crystallographically distinct Mn cations are each located on a crystallographic threefold rotation axis. Two Na cations are also located on special positions with site symmetry 3 and two further Na cations occupy special positions with site symmetry $\overline{3}$.

Comment

Metal-acetylacetonate complexes have been of interest as precursors in the preparations of thin films, nanoparticles and nanowires in recent years (Skordas et al., 2003; Sun et al., 2004; Chang \& Wu, 2004). Whereas a great deal of work has been reported on the synthesis and characterization of various chromium(III), iron(III), cobalt(III) and manganese(III) complexes of the acetylacetonate ligand, there are only a few complexes reported with manganese(II) (Shibata et al., 1984, 1985). Unlike the crystal structure of the title complex, the manganese(II)-acetylacetonate complexes found in the literature exist as trimers, $\left[\mathrm{Mn}(\mathrm{acac})_{2}\right]_{3}$. As part of a general method for the preparation of stable manganese(II) complexes, we prepared $\mathrm{Na}\left[\mathrm{Mn}(\mathrm{acac})_{3}\right]$, (I), and its crystal structure is presented here (Table 1). Compound (I) was prepared at room temperature by the reaction of $\mathrm{Mn}(\mathrm{acac})_{3}$ with NaBH_{4} in methanol. The purpose of the NaBH_{4} was twofold, as the reducing agent for manganese(III) and as the Na ion source for the final product.

(I)

The manganese(II) ions are each coordinated by six O atoms from three different acetylacetonate ligands in a trigonal prismatic geometry (Fig. 1). Every acetylacetonate O atom is also coordinated to an Na cation, resulting in distorted octahedral NaO_{6} groupings sandwiched between two adjacent

Received 3 May 2005 Accepted 12 May 2005 Online 21 May 2005

Figure 1
View of a fragment of (I), showing 50% displacement ellipsoids. H atoms are represented by spheres of arbitrary size.
$\left[\mathrm{Mn}(\mathrm{acac})_{3}\right]^{-}$units (Fig. 2). This results in infinite columns of alternating manganese- and sodium-centred polyhedra, propagating along [111] and equivalent directions. The order of cations within a column is $\mathrm{Na} 1-\mathrm{Mn} 1 A-\mathrm{Na} 2-\mathrm{Mn} 1 B-$ $\mathrm{Na} 3-\mathrm{Mn} 1 C-\mathrm{Na} 4-\mathrm{Mn} 1 C-\mathrm{Na} 3-\mathrm{Mn} 1 B-\mathrm{Na} 2-\mathrm{Mn} 1 A$; the sequence then repeats.

Experimental

A solution of $\mathrm{Mn}(\mathrm{acac})_{3}(20 \mathrm{mg}, 0.057 \mathrm{mmol})$ dissolved in methanol $(15 \mathrm{ml})$ was added to a methanol solution $(5 \mathrm{ml})$ of $\mathrm{NaBH}_{4}(3.3 \mathrm{mg}$, 0.087 mmol). After stirring the reaction mixture for an hour, the solution was concentrated by removing the solvent in vacuo. Slow diethyl ether diffusion into the above solution resulted in colorless prismatic crystals of $\mathrm{Na}\left[\mathrm{Mn}(\mathrm{acac})_{3}\right]$.

Crystal data

$\mathrm{Na}\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{3}\right]$	Cell parameters from 9160
$M_{r}=375.25$	reflections
Cubic, $P a \overline{3}$	$\theta=2.3-26.0^{\circ}$
$a=22.075(3) \AA$	$\mu=0.79 \mathrm{~mm}^{-1}$
$V=10757(3) \AA^{3}$	$T=100(2) \mathrm{K}$
$Z=24$	Prism, colorless
$D_{x}=1.390 \mathrm{Mg} \mathrm{m}^{-3}$	$0.36 \times 0.34 \times 0.24 \mathrm{~mm}$
Mo $K \alpha$ radiation	

Figure 2
The packing in (I), viewed along the c axis. H atoms bonded to C atoms have been omitted for clarity. $\mathrm{Na}-\mathrm{O}$ bonds are indicated by dashed lines.

Data collection

Bruker SMART APEX
3539 independent reflections
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.760, T_{\text {max }}=0.834$
80828 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.113$
$S=1.01$
3539 reflections
209 parameters
H -atom parameters constrained

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn} 1 A-\mathrm{O} 2 A$	$2.1481(13)$	$\mathrm{Na} 1-\mathrm{O} 1 A$	$2.4026(13)$
$\mathrm{Mn} 1 A-\mathrm{O} 1 A$	$2.1493(13)$	$\mathrm{Na} 2-\mathrm{O} 1 B$	$2.4231(17)$
$\mathrm{Mn} 1 B-\mathrm{O} 1 B$	$2.1542(15)$	$\mathrm{Na} 2-\mathrm{O} 2 A$	$2.4651(16)$
$\mathrm{Mn} 1 B-\mathrm{O} 2 B$	$2.1690(14)$	$\mathrm{Na} 3-\mathrm{O} 2 B$	$2.4351(16)$
$\mathrm{Mn} 1 C-\mathrm{O} 1 C$	$2.1486(14)$	$\mathrm{Na} 3-\mathrm{O} 1 C$	$2.4579(16)$
$\mathrm{Mn} 1 C-\mathrm{O} 2 C$	$2.1562(14)$	$\mathrm{Na} 4-\mathrm{O} 2 C$	$2.3605(14)$

All H atoms were initially positioned geometrically. The methyl H atoms were then constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$

metal-organic papers

distances of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The positions of the H atoms on the central C atoms were refined as riding, with $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The torsion angle variables for the methyl groups were omitted from the last cycle of refinement after all structural parameters had converged.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Financial support received from the Robert A. Welch Foundation (grant AX 1540) is gratefully acknowledged. The authors thank the National Science Foundation (CHE-
0079282) and the University of Kansas for funds to acquire the diffractometer and computers used in this work.

References

Chang, K.-W. \& Wu, J.-J. (2004). Adv. Mater. 16, 545-549.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS, Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Shibata, S., Onuma, S. \& Inoue, H. (1984). Chem. Lett. 4, 485-486.
Shibata, S., Onuma, S. \& Inoue, H. (1985). Inorg. Chem. 24, 1723-1725.
Skordas, S., Papadatos, F., Nuesca, G., Sullivan, J. J., Eisenbraun, E. T. \& Kaloyeros, A. E. (2003). J. Mater. Res. 18, 1868-1876.
Sun, S. H., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X. \& Li, G. X. (2004). J. Am. Chem. Soc. 126, 273-279.

